
HTTP/2-3 and DASH
COS 461 - Precept 8

Review: HTTP

HTTP: HyperText Transfer Protocol

Primary application layer protocol used for fetching and uploading web traffic

Used internally by your web browser, but can be implemented by any
user-level application

You did this on Assignment 4!

Review: HTTP/1.0

HTTP/1.0: Simple wrapper around TCP socket

Requires opening a new socket for each
HTTP request

Requires 3 RTTs per request

Overhead is even worse when TLS is
involved, because this requires establishing a
new RSA key pair for each HTTP request.

Review: HTTP/1.1

HTTP/1.1: Eliminates overhead of
setting up a new socket for each
connection

Web browser can cache sockets from
recent connections and reuse them

Client and server send keep-alive
messages every few seconds to verify
the connection is still live

HTTP/2

So what’s wrong with HTTP/1.1?

Web pages are fetched iteratively

Can we fetch resources all in one go?

SPDY: Proposal by Google in 2009

“Server Push”: Server can return
content the client did not directly
request

HTTP/2

So what’s wrong with HTTP/1.1?

Web pages are fetched iteratively

Can we fetch resources all in one go?

SPDY: Proposal by Google in 2009

“Server Push”: Server can return
content the client did not directly
request

In the example to the left, the server can
return index.html and img1.jpg at the
same time.

HTTP/2

SPDY’s general strategy was adapted into HTTP/2 in 2015, along with other
performance features:

Header compression (reduce data size)

Multiplexing (eliminates head-of-line blocking)

Prioritization of Requests (browser can specify which requests are most
time-dependent)

HTTP/2 is now the dominant HTTP flavor used by browsers and servers.

HTTP/3

HTTP/3: New version of HTTP standard that is not yet widely deployed

Problem: HTTP/2 solves the head-of-line blocking problem at the application layer,
but not the transport layer.

If TCP encounters a packet loss, this affect all open HTTP/2 requests.

HTTP/3 uses QUIC, which uses UDP instead of TCP and re-implements some
TCP features in user-space.

Retransmission in HTTP/3 does not block other outstanding requests.

DASH

DASH - Dynamic Adaptive streaming over HTTP

Downloading versus streaming

Difference
● Consume on the fly: streaming
● Consume later: downloading

Need for Streaming
● Don’t have to wait and load a 1GB

video to start watching it!
● Just the first minute is enough to

start watching.

Assume 720p requires a 1Mbps connection

Streaming videos - choosing a quality ahead of time

User’s network < 1Mbps → buffering 😢

User’s network == 1Mbps → perfect! 😁

User’s network > 1Mbps → could use higher quality! 😒

DASH

Adapt video quality dynamically during stream

● Chunks of video

● Use a “playlist” of chunks

{
 "0": {
 "360p": "http://youtube.com/video1_360p_part0.mp4, "
 720p: "http://youtube.com/video1_720p_part0.mp4,
 },
 "1": {
 "360p": "http: //youtube.com/video1_360p_part1.mp4,
 "720p: "http: //youtube.com/video1_720p_part1.mp4,
 },
}

● Change quality for next chunk
● Signals to increase or decrease video

quality?
○ Buffer occupancy, network

throughput estimates etc.

Discussions

● Generate chunks ahead of time
○ “Processing video”

● CDNs to store these chunks
○ Preemptively push future chunks to cache

● How to choose chunk length?
○ Small duration → adaptation is dynamic, but more overhead
○ Large duration → less flexible and reactive, but lower overhead

YouTube - Stats for nerds

Twitch - what’s different when it comes to live streams?

Delay between
streamer and chat.

Cannot create
chunks.

Video conference?

